References
- Y. Boose, C. Heller, O. Stern, and M. Lynass, “The effect of spectral mismatch on the annual energy output of CdTe-, CIGS- and Si-based photovoltaic modules,” in 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 2012, pp. 3194–3198, doi: 10.4229/27thEUPVSEC2012-4EO.3.4.
- D. L. King, J. A. Kratochvil and W. E. Boyson, “Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors,” in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997, 1997, pp. 1113-1116, doi: 10.1109/PVSC.1997.654283.
- SolarFarmer Inverter Modelling Research Notes, Jeff Newmiller, DNV GL, 10 December 2015
- J. E. Hay, “Calculation of solar irradiances for inclined surfaces: Validation of selected hourly and daily models,” Atmosphere-Ocean, vol. 24, no. 1, pp. 16-41, 1986, doi: 10.1080/07055900.1986.9649238.
- R. Perez, P. Ineichen, R. Seals, J. Michalsky, and R. Stewart, “Modelling daylight availability and irradiance components form direct and global irradiance,” Solar Energy, vol. 44, no. 5, pp. 271-289, 1990, doi: 10.1016/0038-092X(90)90055-H.
- N. Martin and J.M. Ruiz, “Calculation of the PV modules angular losses under field conditions by means of an analytical model,” Solar Energy Materials and Solar Cells, vol. 70, no. 1, pp. 25-38, 2001, doi: 10.1016/S0927-0248(00)00408-6
- A. T. Young, “Air mass and refraction,” Applied Optics, vol. 33, no. 6, pp. 1108–1110, 1994, doi: 10.1364/AO.33.001108.
- DNV GL, “Solar Energy Assessment Reference Guide”, August 2016.
- J. Duffie and W. Beckman, Solar Engineering of Thermal Processes, Fourth Edition, John Wiley & Sons, Inc., 2013, doi: 10.1002/9781118671603.
- I. Reda and A. Andreas, “Solar Position Algorithm for Solar Radiation Applications” NREL, January 2008 (NREL/TP-560-34302) [Online]. Available: https://www.nrel.gov/docs/fy08osti/34302.pdf
- Meteotest AG, Meteonorm v7.2 Handbook part II: Theory. Bern, Switzerland, 2017 [Online]. Available: https://meteonorm.com/en/meteonorm-documents
- D. G. Erbs, S. A. Klein and J. A. Duffie, “Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation,” Solar Energy, vol. 28, no. 4, pp. 293–302, 1982, doi: 10.1016/0038-092X(82)90302-4.
- B. Marion, "A model for deriving the direct normal and diffuse horizontal irradiance from the global tilted irradiance," Solar Energy, vol. 122, pp. 1037-1046, 2015, doi: 10.1016/j.solener.2015.10.024.
- M. Lee and A. Panchula, "Spectral correction for photovoltaic module performance based on air mass and precipitable water," 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016, pp. 1351-1356, doi: 10.1109/PVSC.2016.7749836.
- M. Lee and A. F. Panchula, "Variation in spectral correction of PV module performance based on different precipitable water estimates," 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016, pp. 2692-2697, doi: 10.1109/PVSC.2016.7750139.
- Sandia National Laboratories, PV Performance Modelling Collaborative, PV_LIB Toolbox, (2017). [Online]. Available: https://github.com/sandialabs/MATLAB_PV_LIB
- C. Gueymard, "Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data," Solar Energy, vol. 51, no.2, pp. 121-138, 1993, doi: 10.1016/0038-092X(93)90074-X.
- “A Quick Derivation relating altitude to air pressure”, Portland State Aerospace Society, Version 1.03, 12/22/2004
- R. Perez, P. Ineichen, E.L. Maxwell, R. D. Seals, and A. Zelenka, “Dynamic global-to-direct irradiance conversion models,” ASHRAE Transactions, vol. 98, no. 1, pp. 354-369, 1992 [Online]. Available: https://archive-ouverte.unige.ch/unige:38583.
- A. Mermoud and T. Lejeune, “Performance assessment of a simulation model for PV modules of any available technology,” 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, pp. 4786-4791, 2010, doi: 10.4229/25thEUPVSEC2010-4BV.1.114.
- W. De Soto, S. a. Klein and W. a. Beckman, “Improvement and validation of a model for photovoltaic array performance,” Solar Energy, vol. 80, no. 1, pp. 78–88, Jan. 2006, doi: 10.1016/j.solener.2005.06.010.
- A. P. Dobos, “An improved coefficient calculator for the California Energy Commission 6 parameter photovoltaic module model,” _Journal Solar Energy Engineering, vol. 134, no. 2, 021011, 2012, doi: 10.1115/1.4005759.
- J. A. Kratochvil, W. E. Boyson, and D. L. King, “Photovoltaic array performance model,” United States. Department of Energy, Albuquerque, New Mexico, 2004, doi: 10.2172/919131
- J. Merten, J. M. Asensi, C. Voz, A. V Shah, R. Platz, and J. Andreu, “Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules,” IEEE Trans. Electron Devices, vol. 45, no. 2, pp. 423–429, Feb. 1998, doi: 10.1109/16.658676.
- W. E. Boyson, G. Galbraith, D. L. King, and S. Gonzalez, “Performance model for grid-connected photovoltaic inverters" SAND2007-5036, United States, Department of Energy, Albuquerque, New Mexico, 2007, doi: 10.2172/920449.
- C. N. Long, and Y. Shi, “An automated quality assessment and control algorithm for surface radiation measurements,” The Open Atmospheric Science Journal, vol. 2, pp. 23-37, 2008, doi: 10.2174/1874282300802010023.
- A. Neubert, M. Hamer and J. Lopez-Lorente, “Shading in utility-scale photovoltaic plants: A hemicube approach for efficient shading calculations,” Solar RRL, in press, 2023, doi: 10.1002/solr.202300473.
- P. Ineichen, “Quatre années de mesures d’ensoleillement à Genève”, 1983, doi: 10.13097/archiveouverte/ unige:17467.